Pedestrian Crossings: Uncontrolled Locations
Acknowledgements

The financial and logistical support provided by the Minnesota Local Road Research Board, the Minnesota Department of Transportation (MnDOT), and the Minnesota Local Technical Assistance Program (LTAP) at the Center for Transportation Studies (CTS), University of Minnesota for this work is greatly acknowledged.

The procedures presented in this report were developed based on information from previously published research studies and reports and newly collected field data.

The authors would also like to thank the following individuals and organizations for their contributions to this document.

TECHNICAL ADVISORY PANEL MEMBERS

Tony Winiecki, Scott County
Pete Lemke, Hennepin County
Kate Miner, Carver County
Tim Plath, City of Eagan
Mitch Rasmussen, Scott County
Jason Pieper, Hennepin County
Mitch Bartelt, MnDOT
Melissa Barnes, MnDOT
Tim Mitchell, MnDOT
Alan Rindels, MnDOT
Mark Vizecky, MnDOT
Derek Leuer, MnDOT
Shirlee Sherkow, MnDOT
James McCarthy, FHWA
Jim Grothus, CTS

DATA COLLECTION

John Hourdos and Stephen Zitzow, University of Minnesota

PRODUCTION

Research, Development, and Writing: Bryan Nemeth, Ross Tillman, Jeremy Melquist, and Ashley Hudson, Bolton & Menk, Inc.

Editing: Christine Anderson, CTS

Graphic Design: Abbey Kleinert and Cadie Wright Adikhary, CTS, and David Breiter, Bolton & Menk, Inc.

This material was developed by Bolton & Menk, Inc., in coordination with the Minnesota Local Road Research Board for use by practitioners. Under no circumstances shall this guidebook be sold by third parties for profit.

The contents of this guidebook reflect the views of the authors, who are responsible for facts and the accuracy of the data presented. The contents do not necessarily reflect the views or policies of the Minnesota Local Road Research Board or the Minnesota Department of Transportation at the time of publication. This guidebook does not constitute a standard, specification, or regulation.
The information presented in this guidebook is provided as a resource to assist agencies in their efforts to evaluate uncontrolled pedestrian crossings and determine appropriate treatment options. The evaluation procedure provided in this guidebook takes into account accepted practice, safety, and operations.

Pedestrian crossings are an important feature of the multimodal transportation system. They enable pedestrians and bicyclists to cross conflicting traffic so they can access locations on either side of streets and highways. Pedestrian crossings can be either marked or unmarked and can be placed at intersections or mid-block locations. Uncontrolled pedestrian crossings are crossing locations that are not controlled by a stop sign, yield sign, or traffic signal.

This guidebook is a summary of the evaluation procedure presented in the *Uncontrolled Pedestrian Crossing Evaluation and Highway Capacity Manual Unsignalized Pedestrian Crossing Training Report*.

This guidebook considers best practices in pedestrian crossing evaluation by the Federal Highway Administration, the Minnesota Department of Transportation, the American Association of State Highway and Transportation Officials (AASHTO), the Transportation Research Board, and other research. The information is intended to offer agencies a consistent methodology for evaluating uncontrolled pedestrian crossing locations on their roadways that considers both safety and delay.

The final decision to implement the evaluation methodology or any of the crossing location treatment strategies presented in this guidebook resides with the agency. There is no expectation or requirement that agencies implement this evaluation strategy, and it is understood that actual implementation of the evaluation decisions will be made by agency staff.

It is the responsibility of agencies to determine if the procedure presented in this guide is appropriate and consistent with their needs.

- This guidebook does not set requirements or mandates.
- This guidebook contains no warrants or standards and does not supersede other publications that do.
- This guidebook is not a standard and is neither intended to be, nor does it establish, a legal standard of care for users or professionals.
- This guidebook does not supersede the information in publications such as:
 - Minnesota Manual on Uniform Traffic Control Devices
 - AASHTO Guide for the Planning, Design, and Operation of Pedestrian Facilities
 - Minnesota’s Best Practices for Pedestrian/Bicycle Safety
 - Best Practices Synthesis and Guidance in At-Grade Trail-Crossing Treatments
 - 2010 Highway Capacity Manual
Introduction and Background

According to 2013 Minnesota State Statutes, “where traffic-control signals are not in place or in operation, the driver of a vehicle shall stop to yield the right-of-way to a pedestrian crossing the roadway within a marked crosswalk or at an intersection with no marked crosswalk.” Additionally, “Every pedestrian crossing a roadway at any point other than within a marked crosswalk or at an intersection with no marked crosswalk shall yield the right-of-way to all vehicles upon the roadway.”

Although the state statute says that motorists should stop for a pedestrian within a marked crosswalk or crossing at an intersection, in practice motorists do not always stop for pedestrians and yield the right-of-way. Additionally, at locations with high traffic volumes, there may not be adequate gaps in the traffic stream to allow pedestrians to safely cross. These situations can result in crossings that are challenging to navigate and cause long delays for pedestrians, which may lead to a high risk-taking environment and decrease safety.

Pedestrian crossing treatments that either reduce the crossing distance or increase driver yield rates have been shown to reduce the potential delay experienced by a pedestrian. While state statutes support the rights of pedestrians at all intersections and marked crosswalks, it is a small comfort when a crash between a vehicle and a pedestrian occurs because a motorist failed to stop and yield the right-of-way.

Providing safe crossing situations for pedestrians relies on placing crosswalks and other pedestrian crossing treatments at appropriate locations in a way that also results in minimal pedestrian delay. The Minnesota Manual on Uniform Traffic Control Devices (MN MUTCD) states that crosswalk pavement markings should not be placed indiscriminately and an engineering study should be completed when crosswalk markings are being contemplated at a crossing.

Defining where to place pedestrian crossing facilities—including markings, signs, and/or other devices—depends on many factors, including pedestrian volume, vehicular traffic volume, sight lines, and speed. This guidebook presents a methodology for the evaluation of pedestrian crossing locations that takes into account both pedestrian safety and delay.

Sources:
Pedestrian Crossing Evaluation Methodology

The evaluation of a pedestrian crossing location should be thoroughly documented. This includes not only the location details, evaluation, decisions, and design process, but also any stakeholder involvement and public comments. The evaluation methodology presented is based on research on the safety of pedestrian crossings and the procedure developed in the 2010 Highway Capacity Manual on pedestrian delay.

The jurisdictional authority has the final decision on the control and design of pedestrian crossing facilities and features on their roadways.

The evaluation methodology guidance is shown in the flowchart on pages 6–7.

STEP 1 Field Data Review

A Data Collection Field Review Worksheet is provided at the end of this guidebook (pages 28–29). The field data review should consider and collect information about the following elements:

GEOMETRICS

Crossing Length
- Shorter pedestrian crossing lengths are preferred by pedestrians.
- The crossing length (L) is measured from curb face to curb face and is the total length a pedestrian is exposed to conflicting traffic (as shown at right).
- If there is a median, two separate crossing lengths are measured.
- Pedestrian exposure is reduced on shorter crossings.
Consider Pedestrian Barriers and Pedestrian Re-Routing

STEP 8

≤ 35 mph

School Crossing? (STEP 9)

No

≥ 20 peds/pk hr

Yes

≥ 14 peds/pk hr

No

Consider Appropriate Traffic Calming Treatments (STEP 11)

Consider Appropriate Traffic Calming Treatments With or Without Uncontrolled Crossing Treatments

Consider Appropriate Uncontrolled Crossing Treatments

May Need Traffic Calming Treatments Also for School Locations Consider Crossing Guards as a Treatment

HCM LOS Analysis

Acceptable LOS? (STEP 4)

No

Yes

STEP 4

Consider Appropriate Uncontrolled Crossing Treatments

May Need Additional Treatment Options

Consider Appropriate Signing and Marking Treatment

Yes

STEP 11

Consider Pedestrian Barriers and Pedestrian Re-Routing and/or Appropriate High Level Treatments (Traffic Signal, Pedestrian Overpass/Bridge or Pedestrian Underpass/Tunnel)*

HCM LOS Analysis Acceptable LOS? (STEP 4)

No

Yes

Use Option(s)*

* The Application of a Crosswalk and any Treatments Shall Consider Engineering Judgment and shall be approved by the Jurisdictional Authority.
Median Width
- A median wider than 6 feet can provide a refuge space for pedestrians.
- A wider median is preferred by pedestrians.
- The median width (W) is measured from curb face to curb face (as shown below).
- A median should be sufficiently sized to handle the pedestrians using it.

Crosswalk Width
- Crosswalk width provides a defined area in which to cross.
- Effective crosswalk width is measured at the narrowest point of the crossing, be it in the ramp or the crosswalk.
- Crosswalk width (Wc) is the width measurement at the narrowest point of the crossing (as shown at right), unless other space is usable by pedestrians (i.e., in downtown locations).

Curb Ramps
- Curb ramps provide equal access to all users.
- Pedestrian curb ramps are required for all pedestrian crossing locations.

Americans with Disabilities Act (ADA) Requirements
- ADA requirements for pedestrian crossings include grades, tactile surfaces/truncated domes, ramp width, and landing areas.
- The requirements are expansive and are beyond the scope of this guidebook.
- Please see the Minnesota Department of Transportation Accessibility Design Guidance, http://www.dot.state.mn.us/ada/design.html, for detailed information.

Sources:
Roadway Speed
- Slower speeds are preferred by pedestrians.
- The speed of a vehicle directly impacts the sight distance needed and the braking time of a vehicle.
- The speed (S) is used to determine the stopping sight distance. The speed should be the 85th percentile speed of the roadway being crossed. In the absence of collected speed data, it is assumed that the 85th percentile speed is equal to the speed limit.
- Slower speeds have been shown to reduce the possibility of a fatal crash in pedestrian/vehicle crashes based on study results by the Washington State Department of Transportation, as shown in the chart below.

Roadway Curvature
- The vertical and horizontal curvature of a roadway can impact sight lines for both motorists and pedestrians.
- For more information on vertical and horizontal curvature, please see the American Association of State Highway and Transportation Officials: A Policy on Geometric Design of Highways and Streets (AASHTO Green Book).

Sources:
Stopping Sight Distance
- Stopping sight distance (SSD) is the distance covered by a vehicle during a stopping procedure. SSD should be provided at all pedestrian crossings.
- The SSD considers both brake reaction distance and braking distance.

\[SSD = 1.47st + 1.075 \frac{S^2}{30 \left(\frac{a}{32.2} \right)^2} + G \]

Where:
- SSD = stopping sight distance
- S = speed (mph)
- t = brake reaction distance, 2.5 s
- a = deceleration rate, ft/s\(^2\), default = 11.2 ft/s\(^2\)
- G = grade, rise/run, ft/ft

For more information on SSD, please see the AASHTO Green Book.

Pedestrian Sight Distance
- While Minnesota State Statute requires that motorists stop for pedestrians legally crossing, many pedestrians wait for an adequate gap in traffic before crossing.
- Pedestrian sight distance (PedSD) is a term to describe the distance covered by a motorist during the time it takes a pedestrian to recognize an adequate gap in traffic and cross the roadway.

\[PedSD = 1.47S \left(\frac{L}{S_p} + t_s \right) \]

Where:
- PedSD = pedestrian crossing sight distance
- S = design speed (mph)
- L = crossing distance (ft)
- \(S_p \) = average pedestrian walking speed (ft/s), default = 3.5 ft/s
- \(t_s \) = pedestrian start-up and end clearance time (s), default = 3.0 s

Traffic and Pedestrian Data
- The volume of vehicles on the roadway directly affects the number of gaps available for pedestrians to cross a roadway.
- The volume of pedestrians using the crossing affects how motorists view the crossing. A highly used crossing may be more recognizable to a motorist, resulting in a safer crossing.
ADDITIONAL SITE CHARACTERISTICS

Lighting

- Lighting should be provided at intersection crossings and marked crossings that are used at night.
- Intersection or pedestrian scale lighting may be appropriate to light the pedestrian crossing location.
- Continuous street lighting can provide adequate lighting of pedestrian facilities but may need to be supplemented at pedestrian crossing locations.
- Lighting should follow the recommended levels provided in the AASHTO Roadway Lighting Design Guide.
- Lighting should provide positive contrast if possible.
- Positive contrast lights the pedestrian from the front so they are more easily seen by approaching motorists.
- Examples of lighting configurations are shown in the diagrams below and at right.
Crosswalk Pavement Markings

- Crosswalk markings shall follow the designs as stated in the MN MUTCD.
- High-visibility crosswalk markings include continental, zebra, and ladder (examples shown below and at right). Markings should be in good to excellent condition and highly visible to approaching traffic.

Signing

- Signing shall follow the design and placement as stated in the MN MUTCD.
- Signing options are shown in the images below.

Sources:
Minnesota Department of Transportation, Minnesota Manual on Uniform Traffic Control Devices, Roseville, MN: Minnesota Department of Transportation, January 2014.
Distance to Adjacent Pedestrian Crossing Facilities
- If there is a nearby pedestrian crossing facility that can serve the same movements with a shorter travel time—and if this nearby crossing facility can be seen from the crossing location being studied—the crossing location being studied may not be needed.
- In some cases, an existing pedestrian crossing may not serve the pedestrian movements of the area and should be moved to a more appropriate location.
- The other location may actually provide a shorter travel time when considering the time waiting to cross.
- If pedestrians are already crossing at a location, they are unlikely to choose to cross at another location unless it is shorter, regardless of safety. It is important to provide crossings at locations where pedestrians are already crossing, or consider creating physical barriers if safety can be achieved and direction to a nearby crossing is provided.

Distance to Adjacent Intersections with All-Way Stop, Signal, or Roundabout Control
- An adjacent controlled crossing location may provide a shorter travel time when considering the time waiting to cross.

Origins and Destinations
- Review pedestrian paths between nearby origins and destinations.
- Typical origins and destinations of importance include:
 - Bus stops to businesses and residences
 - High-density residential to bus stops and commercial/retail
 - Hospitals and medical centers to bus stops and parking
 - Retirement communities to bus stops and commercial retail
 - Schools/colleges/universities to housing and parking
 - Parks to residences
 - Recreational/community centers to residences and parking
 - Theatres and museums to parking
 - Trails to parks and other trails
 - Commercial/retail space to parking
Safety Review

The safety review includes evaluating the crash records for the crossing location. Pedestrian crashes may necessitate a more in-depth look at the issues and concerns at a crossing location.

Rear-end crashes at a location may indicate that motorists are stopping for pedestrians, but they may also indicate that there is inadequate stopping sight distance. Other types of crashes should be reviewed to determine if the conflicts are impacting the crossing safety and if they indicate other intersection concerns.

Stopping Sight Distance

Every pedestrian crossing location should have adequate stopping sight distance (SSD). If adequate SSD cannot be provided at a potential crossing location, the location may not be suitable for a pedestrian crossing. Adequate SSD ensures that most motorists under normal conditions will be able to stop for a pedestrian that has entered the roadway.

If adequate SSD is not provided, consider pedestrian barriers and pedestrian routing to alternate crossing locations.

HCM Level of Service Analysis

To determine the level of service (LOS) of the current crossing condition, follow the procedure outlined in the 2010 *Highway Capacity Manual*. The methodology follows a six-step program, as shown below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identify Two-Stage Crossings</td>
</tr>
<tr>
<td>2</td>
<td>Determine Critical Headway</td>
</tr>
<tr>
<td>3</td>
<td>Estimate Probability of a Delayed Crossing</td>
</tr>
<tr>
<td>4</td>
<td>Calculate Average Delay to Wait for Adequate Gap</td>
</tr>
<tr>
<td>5</td>
<td>Estimate Delay Reduction due to Yielding Vehicles</td>
</tr>
<tr>
<td>6</td>
<td>Calculate Average Pedestrian Delay and Determine LOS</td>
</tr>
</tbody>
</table>
This six-step procedure to determine LOS for pedestrians at uncontrolled crossing locations is provided in the worksheets at the end of this guidebook (pages 30–34).

The input information for use in the equations is provided in the input table on the second worksheet. An explanation of measuring crosswalk length (L) and crosswalk width (Wc) can be found on page 4 of this guidebook.

LOS is generally deemed acceptable between A and D and deemed unacceptable at E or F. Local agency direction on acceptable service levels should be verified. If the LOS is acceptable and the location already has treatments such as signing and/or striping, consider making no changes at the existing crossing.

If LOS is unacceptable, skip to Step 6. If this procedure is completed after Step 11, consider applying appropriate treatment option(s) if LOS is acceptable. If LOS is deemed acceptable, consider making no changes at the crossing or possibly removing treatments if they are not needed.

Pedestrian Sight Distance

If adequate service levels are provided, pedestrian sight distance (PedSD) should be checked if the crossing is absent of any treatment options. This indicates that the crossing is unmarked and unsigned. If adequate PedSD is provided, consider no changes at the existing crossing.

Review: Origins and Destinations, Alternate Routes

The potential origins and destinations in the area should be reviewed for the most likely path to see how it lines up with the crossing being analyzed. The most important thing to remember is that pedestrians will take the shortest possible route. Understanding this is essential to understanding why a route is being used, especially when there are alternatives available that may actually be safer and provide less delay. In some cases, existing crossings may not actually be placed in locations where pedestrians are using them if the understanding of origins and destinations is incorrect.

Check to see if an alternative route can serve the same movements effectively while providing less delay. This includes the time to traverse to the alternative crossing, cross, and complete the movement to the destination. Average wait time at signals should be added into the equation if the crossing requires traversing a traffic signal.

If the primary origin-destination movements can be accomplished effectively at another crossing without much backtracking, consider making no changes at the existing crossing or adding pedestrian channelization and/or wayfinding. Also consider evaluating the alternate crossing location.

Sources:
Access Spacing and Functional Classification

The functional classification of the roadway and the current access control of the roadway being crossed should be considered.

Roadways that carry more than 12,000 vehicles per day and are classified as high-mobility corridors are generally not candidates for marked uncontrolled pedestrian crossings. Marked uncontrolled pedestrian crossings should only be implemented on signalized roadway corridors if the spacing between the signalized intersections does not adequately serve the pedestrian traffic in the community.

The spacing of pedestrian crossing facilities should follow the access spacing guidelines for signals and primary intersections on the corridor of interest. Primary access intersections are intersections that will remain full access over time while secondary access intersections may provide full or limited access over time.

Due to the limited access along grade-separated roadway facilities, marked and unmarked pedestrian crossings on those facilities are limited to interchanges, tunnels, and bridges. The high speed of the facilities, along with the driver expectations for conflicts, makes any at-grade crossing a safety concern.

Sources:

Speed and Pedestrian Use

Consistent with previous research and evaluation methods, the conditions present at the crossing location should be reviewed and the need for the crossing should consider pedestrian traffic volume using the crossing. It is important that the pedestrian use data be collected at multiple times of day to get an accurate picture of the pedestrian traffic need. The highest hour pedestrian need may not coincide with the highest hour traffic volume crossing the location. In such circumstances, the level of service should be evaluated for the highest pedestrian volume hour and the highest vehicle volume hour separately.

If the crossing location is on a roadway with speeds greater than 35 miles per hour (mph), is in a community of less than 10,000 people, or provides a connection to a major transit stop, there should be a minimum of 14 pedestrians using the crossing during one hour of the day.

If the crossing location is on a roadway with a speed of 35 mph or less, there should be a minimum of 20 pedestrians using the crossing during one hour of the day.

The above pedestrian volume thresholds can be reduced by 0.33 if more than 50 percent of the pedestrian traffic using the crossing consists of the elderly or children.

If these thresholds cannot be met, traffic calming treatments should be considered. In such cases, additional uncontrolled crossing treatments may be considered in conjunction with the traffic calming treatments. Uncontrolled crossing treatments should not be considered by themselves.
FHWA Safety Guidance

Federal Highway Administration (FHWA) guidance in the Safety Effects of Marked versus Unmarked Crosswalks at Uncontrolled Locations should be determined based on the traffic volume, speed, and roadway type. The study indicates the types of treatments recommended for installing marked crosswalks at uncontrolled locations.

Research indicates that there is a statistically significant difference in the safety between a marked and unmarked crossing when traffic volume is over 15,000, or over 12,000 without a median, under most speeds, as shown in the table below.

This research provides the basis for the guidance in Table 1 on page 18. Guidelines provided in the table include intersections and midblock locations with no traffic signals or stop signs on the approach to the crossing.

Crosswalks should not be installed at locations that could present an increased safety risk to pedestrians—such as where there is poor sight distance, complex or confusing designs, a substantial volume of heavy trucks, or other dangers—without first providing adequate design features and/or traffic control devices. Adding crosswalks alone will not make crossings safer, nor will they necessarily result in more vehicles stopping for pedestrians.

Whether or not marked crosswalks are installed, it is important to consider other pedestrian facility enhancements (e.g., raised median, traffic signal, roadway narrowing, enhanced overhead lighting, traffic-calming measures, curb extensions, etc.) as needed to improve the safety of the crossing.

Guidelines outlined in the table are general recommendations; good engineering judgment should be used in individual cases when deciding where to install crosswalks.

Sources:
Table 1: FHWA Safety Guidance Table

<table>
<thead>
<tr>
<th>Roadway Type (Number of Travel Lanes and Median Type)</th>
<th>Vehicle ADT ≤ 9,000</th>
<th>Vehicle ADT > 9,000–12,000</th>
<th>Vehicle ADT > 12,000–15,000</th>
<th>Vehicle ADT > 15,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Speed Limit*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 48.3 km/h (30 mph)</td>
<td>56.4 km/h (35 mph)</td>
<td>≤ 48.3 km/h (30 mph)</td>
<td>≤ 48.3 km/h (30 mph)</td>
</tr>
<tr>
<td></td>
<td>64.4 km/h (40 mph)</td>
<td></td>
<td>64.4 km/h (35 mph)</td>
<td>64.4 km/h (40 mph)</td>
</tr>
<tr>
<td>Two lanes</td>
<td>C</td>
<td>C</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>Three lanes</td>
<td>C</td>
<td>C</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Multilane (four or more lanes) with raised median**</td>
<td>C</td>
<td>C</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>Multilane (four or more lanes) without raised median</td>
<td>C</td>
<td>P</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

*Where the speed limit exceeds 64.4 km/h (40 mph), marked crosswalks alone should not be used at unsignalized locations.

**The raised median or crossing island must be at least 1.2 meters (4 feet) wide and 1.8 meters (6 feet) long to serve adequately as a refuge area for pedestrians, in accordance with MUTCD and American Association of State Highway and Transportation Officials (AASHTO) guidelines.

C = **Candidate sites for marked crosswalks.** Marked crosswalks must be installed carefully and selectively. Before installing new marked crosswalks, an engineering study is needed to determine whether the location is suitable for a marked crosswalk. For an engineering study, a site review may be sufficient at some locations, while a more in-depth study of pedestrian volume, vehicle speed, sight distance, vehicle mix, and other factors may be needed at other sites. It is recommended that a minimum utilization of 20 pedestrian crossings per peak hour (or 15 or more elderly and/or child pedestrians) be confirmed at a location before placing a high priority on the installation of a marked crosswalk alone.

P = **Possible increase in pedestrian crash risk may occur if crosswalks are added without other pedestrian facility enhancements.** These locations should be closely monitored and enhanced with other pedestrian crossing improvements, if necessary, before adding a marked crosswalk.

N = **Marked crosswalks alone are insufficient, since pedestrian crash risk may be increased by providing marked crosswalks alone.** Consider using other treatments, such as traffic-calming treatments, traffic signals with pedestrian signals where warranted, or other substantial crossing improvements, to improve crossing safety for pedestrians.
School Crossings

The safety of children as they get to and from school is of special consideration and may require the implementation of a crosswalk at locations that might otherwise not be considered. A school crossing location will traditionally have significant use by children that occurs in conjunction with standard school start and dismissal times, making the crossing use noticeable to motorists. Consider appropriate uncontrolled treatment options, including crosswalk markings, signs, and crossing guards.
Consider Appropriate Treatment Options

Appropriate treatment options should be considered for crossing locations based on the evaluation flowchart on pages 6–7. In many cases, the most appropriate option is to keep the location unmarked and unsigned, as any treatment may increase the crash potential at the location.

The treatment options have been organized into four separate categories depending on their primary function in serving pedestrian crossings. Some of the options have not been shown to noticeably affect motorist yielding and service levels, but they are provided as examples that have been implemented by some agencies.

SIGNING AND MARKING TREATMENTS

Signing and marking treatments are generally low cost and provide little to no benefit in terms of operational impacts. The most significant impact is for high-visibility markings. The treatments can be appropriate by themselves on low-volume and low-speed roadways unless accompanied by other types of treatments.

Potential signing and marking treatments are outlined in Table 2 on page 21 (treatments should be justified through an engineering study). Examples of selected treatments are also shown at right.

Sources:
Before-and-After Study of the Effectiveness of Rectangular Rapid-Flashing Beacons Used with School Sign in Garland, Texas. Texas Transportation Institute, College Station, TX, April 2012.
Table 2: Signing and Marking Treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Recommended Locations</th>
<th>Staged Pedestrian Yield Rate</th>
<th>Unstaged Pedestrian Yield Rate</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosswalk Markings Only</td>
<td>• Inexpensive • Helps define a crossing location • Indicates to drivers that crossing location is present</td>
<td>• Very little effect at night • Speeds increase over time • Not shown to reduce crashes</td>
<td>• Not usually recommended alone • Low-volume and low-speed roadways • Where justified</td>
<td>NR</td>
<td>NR</td>
<td>$500–$2,000</td>
</tr>
<tr>
<td>Warning Signs</td>
<td>• Inexpensive • Helps define a crossing location • Warning to drivers that crossing location is present</td>
<td>• Tend to be ignored unless pedestrians use the crossing consistently • Proven to be ineffective at reducing crashes at uncontrolled intersections</td>
<td>• Where unexpected entries into the road by pedestrians may occur • At or before the crossing location • With or without a marked crosswalk</td>
<td>NR</td>
<td>NR</td>
<td>$300–$1,200</td>
</tr>
<tr>
<td>Overhead Warning Signs</td>
<td>• May decrease vehicle speed • Requires overhead structure • Tend to be ignored unless pedestrians use the crossing consistently</td>
<td>• Can be expensive • Not shown to reduce crashes</td>
<td>• Multilane roadways • Mid-block crossing locations • Usually coupled with other measures such as RRFBs or beacons</td>
<td>NR</td>
<td>NR</td>
<td>$60,000–$75,000</td>
</tr>
<tr>
<td>Colored Concrete/Brick Pavers</td>
<td>• Inexpensive • Warning to drivers that crossing location is present • May decrease vehicle speed</td>
<td>• Can be expensive • Not shown to reduce crashes</td>
<td>• Downtown/urban conditions • Traffic signal locations • In conjunction with pavement markings</td>
<td>NR</td>
<td>NR</td>
<td>$10,000–$75,000</td>
</tr>
<tr>
<td>Crosswalk Markings and Signs</td>
<td>• Inexpensive • Warning to drivers that crossing location is present • May decrease vehicle speed</td>
<td>• Make snow removal more difficult • Need consistent maintenance and replacement due to vehicle hits</td>
<td>• Where justified</td>
<td>7%</td>
<td>7%</td>
<td>$800–$3,200</td>
</tr>
<tr>
<td>In-Street Crossing Signs (25–30 mph)</td>
<td>• Inexpensive • Additional warning to drivers that crossing location is present</td>
<td>• Not shown to reduce crashes • Speeds increase over time</td>
<td>• Downtown/urban conditions • Supplement warning signs at high pedestrian volume locations • In conjunction with pavement markings</td>
<td>87%</td>
<td>90%</td>
<td>$500–$1,000</td>
</tr>
<tr>
<td>High-Visibility Crosswalk Markings</td>
<td>• May decrease vehicle speed</td>
<td>• Not shown to reduce crashes • Speeds increase over time</td>
<td>• Where justified • Urban conditions</td>
<td>61% (25mph) • 17% (35mph)</td>
<td>91% (25mph) • 20% (35mph)</td>
<td>$5,000–$50,000</td>
</tr>
</tbody>
</table>

NR = No research found on effect to yielding rate
UNCONTROLLED CROSSING TREATMENTS

Uncontrolled crossing treatments generally provide some level of increased yielding rate. They are typically applied to locations with marked crosswalks to provide additional operational and safety benefits in areas with higher volumes and speeds.

Uncontrolled crossing treatments options are outlined in Table 3 on page 23 (treatments should be justified through an engineering study). Selected treatment examples are also shown below.
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Recommended Locations</th>
<th>Staged Pedestrian Yield Rate</th>
<th>Unstaged Pedestrian Yield Rate</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Median with Refuge Island</td>
<td>• Decreases pedestrian crossing distance • Provides higher pedestrian visibility • Reduces vehicle speeds approaching the island • Reduces conflicts • Increases usable gaps • Reduces pedestrian exposure time</td>
<td>• May make snow removal more difficult • May be a hazard for motorists • Small islands not recommended on high-speed roadways (>40 mph)</td>
<td>Wide, two-lane roads and multilane roads with sufficient right-of-way</td>
<td>34%</td>
<td>29%</td>
<td>Variable depending on length</td>
</tr>
<tr>
<td>School Crossing Guards</td>
<td>• Inexpensive • Provides higher pedestrian visibility • Highlights when a pedestrian crossing is being used</td>
<td>• May require trained staff or local law enforcement, especially on high-speed and high-volume roadways</td>
<td>At school locations</td>
<td>NR</td>
<td>86%</td>
<td>Variable</td>
</tr>
<tr>
<td>Pedestrian Crossing Flags</td>
<td>• Inexpensive • Provides higher pedestrian visibility to drivers assuming the flag is held in a noticeable location</td>
<td>• No effect at night • Requires pedestrians to actively use a flag • Can be easily removed/stolen • Shorter crossings are preferred</td>
<td>Downtown/urban locations • High pedestrian volume locations • Across low-speed (<45mph) roadways</td>
<td>65%</td>
<td>74%</td>
<td><$500</td>
</tr>
<tr>
<td>Warning Sign with Edge Mounted LEDs</td>
<td>• Highlights a crossing both at night and during the day</td>
<td>• Requires pedestrian activation • Minimal to no effect on speed</td>
<td>In conjunction with in-road warning lights • Downtown/urban conditions</td>
<td>NR</td>
<td>28%</td>
<td>$3,000–$8,000</td>
</tr>
<tr>
<td>In-Road Warning Lights</td>
<td>• Highlights a crossing both at night and during the day • Provides higher driver awareness when a pedestrian is present</td>
<td>• Snowplows can cause maintenance issues • No effect when road surface is snow covered • Requires pedestrian activation</td>
<td>Downtown/urban conditions</td>
<td>NR</td>
<td>66%</td>
<td>$20,000–$40,000</td>
</tr>
<tr>
<td>Pedestal Mounted Pedestrian Flashing Signal Beacons</td>
<td>• Provides higher driver awareness when a pedestrian is present</td>
<td>• Requires pedestrian activation • Not advisable on multilane streets • Not shown to reduce crashes</td>
<td>Low-speed school crossings • Two-lane roads • Midblock crossing locations</td>
<td>NR</td>
<td>57% (two-lane, 35mph)</td>
<td>$12,000–$18,000</td>
</tr>
<tr>
<td>Pedestrian Overhead Flashing Signal Beacons</td>
<td>• Provides higher driver awareness when a pedestrian is present</td>
<td>• Requires pedestrian activation</td>
<td>Multilane roadways • Mid-block crossing locations • Lower speed roadways</td>
<td>active 47% passive 31%</td>
<td>active 49% passive 67%</td>
<td>$75,000–$150,000</td>
</tr>
<tr>
<td>Rectangular Rapid Flash Beacons (RRFBs)</td>
<td>• Provides higher driver awareness when a pedestrian is present • Increases yielding percentage • Increases usable gaps • Reduces probability of pedestrian risk taking • Can be seen from 360 degrees</td>
<td>• Requires pedestrian activation</td>
<td>Supplement existing pedestrian crossing warning signs • School crossings • Midblock crossing locations • Low- and high-speed roadways</td>
<td>84%</td>
<td>81%</td>
<td>$12,000–$18,000</td>
</tr>
</tbody>
</table>

NR = No research found on effect to yielding rate
TRAFFIC CALMING TREATMENTS

Traffic calming treatments are generally applied to locations experiencing high traffic speeds. Traffic speeds should be lowered to enable any type of at-grade crossing. Traffic calming treatments can also be used to shorten crossing distances and improve pedestrian visibility. The shortened crossing distances reduce the total time of exposure to conflicting traffic, resulting in safer crossing environments. These treatments may be completed in conjunction with other uncontrolled crossing treatments.

A variety of traffic calming treatments are outlined in Table 4 on page 25 (treatments should be justified with an engineering study). Examples of selected treatment options are also shown at right.

For more information on traffic calming treatment options, please see these resources (in addition to the sources listed below):

- LRRB Report MN/RC-1999-01, Effective Traffic Calming Applications and Implementation;
- TRS 0801, Traffic Calming for High Speed Rural Highways
- http://mndot.gov/planning/completestreets

Sources:
Bolton & Menk, Inc.
Before-and-After Study of the Effectiveness of Rectangular Rapid-Flash ing Beacons Used with School Sign in Garland, Texas. Texas Transportation Institute, College Station, TX, April 2012.
Table 4: Traffic Calming Treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Recommended Locations</th>
<th>Staged Pedestrian Yield Rate</th>
<th>Unstaged Pedestrian Yield Rate</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Median with Refuge Island</td>
<td>• Decreases pedestrian crossing distance • Provides higher pedestrian visibility • Reduces vehicle speeds approaching the island • Reduces conflicts • Increases usable gaps • Reduces pedestrian exposure time</td>
<td>• May make snow removal more difficult • May be a hazard for motorists • Small islands not recommended on high-speed roadways (>40 mph)</td>
<td>• Wide, two-lane roads and multilane roads with sufficient right-of-way</td>
<td>34%</td>
<td>29%</td>
<td>Variable depending on length</td>
</tr>
<tr>
<td>Raised Crossings</td>
<td>• Provides higher pedestrian visibility to vehicles • Can reduce vehicle speeds</td>
<td></td>
<td>• Low-speed/urban environments</td>
<td>NR</td>
<td>NR</td>
<td>$5,000–$25,000</td>
</tr>
<tr>
<td>Lighting</td>
<td>• Can be inexpensive • Can reduce vehicle speeds</td>
<td>• No effect during daylight</td>
<td>• Targeted crossing locations not located on a street with continuous roadway lighting</td>
<td>NR</td>
<td>NR</td>
<td>$1,000–$40,000</td>
</tr>
<tr>
<td>Pavement Striping (Road Diet)</td>
<td>• Can be inexpensive • May decrease vehicle speed • May decrease illegal right-side passing • Can be an interim solution</td>
<td>• Does not provide a physical barrier between modes • Pedestrian crossing distance same as existing</td>
<td>• Four-lane undivided roadways • Locations with very long crossings</td>
<td>NR</td>
<td>NR</td>
<td>Variable depending on length</td>
</tr>
<tr>
<td>Curb Bump-Outs/Extensions</td>
<td>• Can be inexpensive • Reduces pedestrian crossing distance • Provides higher pedestrian visibility to vehicles • Reduces speed for turning vehicles • Decreases in illegal right-side passing</td>
<td>• May make snow removal more difficult • Proximity of curb to through traffic may be a safety concern</td>
<td>• Downtown/urban locations</td>
<td>NR</td>
<td>NR</td>
<td>$5,000–$15,000 per crossing</td>
</tr>
<tr>
<td>Channelized Turn Lanes (Corner Islands)</td>
<td>• Decreases pedestrian crossing distance • Provides higher pedestrian visibility • Decrease in illegal right-side passing</td>
<td>• May require new pavement • Can be more challenging for visually impaired pedestrians • Right turning drivers often fail to yield to pedestrians • Can increase right-turn vehicle speeds • May make snow removal more difficult • Vehicle crashes may increase</td>
<td>• Intersections with wide approaches • Intersections with right turn lanes and sufficient corner right-of-way • Intersections with operational improvement needs</td>
<td>NR</td>
<td>NR</td>
<td>$50,000–$100,000 per intersection</td>
</tr>
</tbody>
</table>

NR = No research found on effect to yielding rate
HIGH-LEVEL TREATMENTS

High-level treatments are high cost and are generally implemented on high-volume and high-speed roadways. They are much more difficult to implement unless they are justified based on traffic and pedestrian volume.

Possible high-level treatments are outlined in Table 5 on page 27, and examples of selected treatment options are shown below. For additional information on Treatment Options, please see the sources listed below.

Evaluate LOS for Treatment Options

Step 4 should be repeated after deciding on a treatment option. Determine the level of service (LOS) of the crossing condition with the potential treatment options following the procedure as outlined in the 2010 Highway Capacity Manual. An acceptable service level should be determined by the agency.

If acceptable service levels cannot be met:

- Do nothing (consider leaving the crossing unmarked and unsigned),
- Consider pedestrian routing to another location, and/or
- Consider appropriate high-level treatments.

Sources:

Bolton & Menk, Inc.

Before-and-After Study of the Effectiveness of Rectangular Rapid-Flash Beacons Used with School Sign in Garland, Texas. Texas Transportation Institute, College Station, TX, April 2012.
Table 5: High-Level Treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Recommended Locations</th>
<th>Staged Pedestrian Yield Rate</th>
<th>Unstaged Pedestrian Yield Rate</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Hybrid Beacon</td>
<td>• Provides higher driver awareness when a pedestrian is present • Has been shown to decrease pedestrian crashes</td>
<td>• Potential increase in vehicle crashes • Can have spotty compliance rates due to a lack of driver understanding</td>
<td>• Justified locations • Mid-block crossing locations</td>
<td>97%</td>
<td>99%</td>
<td>$150,000–$300,000</td>
</tr>
<tr>
<td>Traffic Signal</td>
<td>• Provides higher driver awareness when a pedestrian is present • Easily understandable</td>
<td>• May increase crashes due to the driver expectation of a green signal indication</td>
<td>• High pedestrian volume crossings • Justified locations, meets signal warrants</td>
<td>NA</td>
<td>NA</td>
<td>$150,000–$300,000</td>
</tr>
<tr>
<td>Underpass Grade Separation</td>
<td>• Removes pedestrian/vehicle conflicts</td>
<td>• Potential of the crossing not being used • Very location specific • Very expensive • Drainage within an underpass can be problematic • Underpass would require lighting</td>
<td>• Location with compatible grades • High pedestrian volume crossings • High-volume roadways • High-speed roadways</td>
<td>NA</td>
<td>NA</td>
<td>$800,000+</td>
</tr>
<tr>
<td>Overpass Grade Separation</td>
<td>• Removes pedestrian/vehicle conflicts</td>
<td>• Potential of the crossing not being used • Very location specific • Very expensive • Snow removal on overpass may be difficult</td>
<td>• Location with compatible grades • High pedestrian volume crossings • High-volume roadways • High-speed roadways</td>
<td>NA</td>
<td>NA</td>
<td>$1,200,000+</td>
</tr>
</tbody>
</table>

NA = Not applicable or no research found on effect to yielding rates
<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Could another location serve the movement more effectively?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location serves the same pedestrian crossing movements?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of intersections in 4-way stop, roundabout or signalized intersections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What enhancements are currently at the crossing location?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currently signed at crosswalk?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currently visible in advance of crosswalk?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the markings easily discerned?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the condition of the markings good?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the pedestrian crossing currently marked?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is the crosswalk making apparent?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the markings easy to discern?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there pedestrian crosswalk and does it light the crosswalk location?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data / Traffic and Pedestrian Volume / 15-minute increments on the roadway to be crossing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left lane:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right lane:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Through lane:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrians:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hourly:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK 15-min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK 30-min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK 1-hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual peak:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK 15-min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK 30-min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK 1-hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometrics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the location within a roundabout or traffic circle?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average walking speed:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrian speed:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review / Geometric Functions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the location within a roundabout or traffic circle?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosswalk width: effective crosswalk width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median of median at crosswalk location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosswalk location:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Collection Worksheet

Uncontrolled Pedestrian Crossing

Project #:
Revised:
City / State:
Location:
Date:

The first step in understanding the pedestrian needs at a potential crossing location is completing.

Sign Distance Calculations:

<table>
<thead>
<tr>
<th>L</th>
<th>= Length of Crossing</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>= Design Speed, mph</td>
</tr>
<tr>
<td>T</td>
<td>= Effective Pedestrian Walking Speed, ft/s</td>
</tr>
<tr>
<td>a</td>
<td>= deceleration rate, ft/s²</td>
</tr>
<tr>
<td>t</td>
<td>= Excursion Time, s</td>
</tr>
</tbody>
</table>

Pedestrian Start Position (PSP):

\[\text{PSP} = T \times \left(\frac{S}{a} + \frac{t}{2} \right) \]

Stoplight Start Distance (SSD):

\[\text{SSD} = T \times \left(\frac{S}{a} + \frac{t}{2} \right) \]

Notes:

- Draw or insert map of location being studied.
- Mark the following features: destination, potential conflicts,ivelate positioning, where, lane boundaries, shoulder width, sidewalks.
- Specify the location being studied. Identify intersection type, control, traffic movement, potential conflicts, and other crossings or crossing locations nearby.
- Mark the following: destination, potential conflicts, pedestrian movement chart, where, lane boundaries, shoulder width, sidewalks.
Pedestrian crossings within a signalized corridor:

This process is not for use of signalized crossings and has not been verified to be accurate for unsignalized crossings or intersections.

References and other documents:

These materials are for training purposes and should not be used in place of the manual. Use of these materials is at the user's discretion and accuracy is not guaranteed. No warranty is made by the developer as to the accuracy, completeness, or reliability of the equations and results. No responsibility is assumed for incorrect results or damage resulting from the use of these materials.

The WORKSHOPS provide a procedure for evaluating the level of service (LOS) at uncontrolled pedestrian crossings at intersections and mid-block locations. The procedure is based on the HCM and the 2010 Highway Capacity Manual (HCM). Any questions or discrepancies should be directed to the HCM Manual. Any questions on the approach, assumptions, and limitations of the procedure or for verification of equations are directed to the 2010 HCM Manual.

Pedestrian Level of Service (LOS) at Uncontrolled Crossing Locations

2010 Highway Capacity Manual (HCM)
HCM Evaluation Worksheet

31

Results:

Entering data into the tables above will populate the evaluation tables in Microsoft Excel.

Crossing Treatment Yield Rate

\[Y = \frac{N}{W}\times\frac{A}{\lambda}\times\frac{3600}{\gamma}\times\frac{0.3}{S}\times\frac{1}{0.35}\times\frac{1}{5}\times\frac{1}{S}\times\frac{1}{L} \]

M W = motorized yield rate (decimal)
N = number of through lanes crossed (integer)
W = crossing width (ft)
A = vehicular flow rate (veh/h)
\(\lambda \) = pedestrian flow rate (ped/s)
\(\gamma = \) vertical headroom volume (veh/hr)
L = pedestrian crossing time (sec)
S = speed of pedestrian walking (mph)

Crossing 2:

\[Y = \frac{N}{W}\times\frac{A}{\lambda}\times\frac{3600}{\gamma}\times\frac{0.3}{S}\times\frac{1}{0.35}\times\frac{1}{S}\times\frac{1}{L} \]

\(Y \) = crossing yield rate
N = number of through lanes crossed (integer)
W = crossing width (ft)
A = vehicular flow rate (veh/h)
\(\lambda \) = pedestrian flow rate (ped/s)
\(\gamma = \) vertical headroom volume (veh/hr)
L = pedestrian crossing time (sec)
S = speed of pedestrian walking (mph)

Crossing 3:

\[Y = \frac{N}{W}\times\frac{A}{\lambda}\times\frac{3600}{\gamma}\times\frac{0.3}{S}\times\frac{1}{0.35}\times\frac{1}{S}\times\frac{1}{L} \]

\(Y \) = crossing yield rate
N = number of through lanes crossed (integer)
W = crossing width (ft)
A = vehicular flow rate (veh/h)
\(\lambda \) = pedestrian flow rate (ped/s)
\(\gamma = \) vertical headroom volume (veh/hr)
L = pedestrian crossing time (sec)
S = speed of pedestrian walking (mph)

If this is a two-stage crossing, each stage must be evaluated separately using Crossing 1 and Crossing 2.

The following is the basic information needed to complete the analysis:

| Project Number | Agency | Reviewer(s) | Scenario | City/State | Date |

Intersection and Mid-Block Crossings

Pedestrian Level of Service (LOS) at Uncontrolled Crossing Locations

2010 Highway Capacity Manual (HCM)
<table>
<thead>
<tr>
<th>N/A</th>
<th>No Peass engaged in crossing at this location</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>Pedestrian Hydraulic Beacon with Reflex</td>
</tr>
<tr>
<td>97%</td>
<td>School Crossing Guards</td>
</tr>
<tr>
<td>84%</td>
<td>Reflective Rod-Pedestrian Beacon</td>
</tr>
<tr>
<td>64%</td>
<td>Markings (25 m)</td>
</tr>
<tr>
<td>61%</td>
<td>High-Visibility Signs and Pavement Markings</td>
</tr>
<tr>
<td>20%</td>
<td>In-Street Warning Sign (1)</td>
</tr>
<tr>
<td>8%</td>
<td>Led Sign With Edge Mounted (2)</td>
</tr>
<tr>
<td>6%</td>
<td>In-Street Crossing Signs</td>
</tr>
<tr>
<td>5%</td>
<td>Pedestrian Crossing Flags (1)</td>
</tr>
<tr>
<td>3%</td>
<td>Pedestrian Activation (1)</td>
</tr>
<tr>
<td>2%</td>
<td>Overhead flashing beacon (1)</td>
</tr>
<tr>
<td>5%</td>
<td>Pedestrian Flashing beacon (1)</td>
</tr>
<tr>
<td>3%</td>
<td>Pedestrian Flags</td>
</tr>
<tr>
<td>2%</td>
<td>Median Reflector Island</td>
</tr>
<tr>
<td>7%</td>
<td>Crosswalk Markings and Signs</td>
</tr>
<tr>
<td>7%</td>
<td>Unsignal Pedestrian Field Rate</td>
</tr>
</tbody>
</table>

Motorist Yield Rate = \(W_y \)

Evaluation Worksheet

Uncountrolled Pedestrian Crossing Level of Service

Determine if there is a crossing treatment used that could provide vehicle yielding. This then provides...