Cement Stabilized Base & Chipseal County Road 54... The Saga Continues

MCEA Annual Conference January 23, 2020

John Brunkhorst, PE - McLeod County Engineer/PW Director Dave Rettner, PE - American Engineering Testing Inc.

Topics

- 1. Background
- 2. Project History
- 3. Construction Highlights
- 4. Construction and Performance Testing
- 5. Costs
- 6. Lessons Learned
- 7. Next Steps

Where is McLeod County?

About 3.5 hours SE of Fargo, ND

Located approximately 60 miles west of the Twin Cities

Where is Project?

County Road 54 (CR 54)

~ 6 miles South of Hutchinson, MN

Entire Corridor
~4 miles
CR 87 to CSAH 7

Initial Project ~1 mile

BACKGROUND

CR 54 Issues

- ~200 ADT
- ~\$5,000 Annually for Dust Control (CaCl₂)
- Washboards (due to speed/braking)
- Frequent Blading Required
- No Funding for traditional base and surfacing
- County Funded (non State Aid route)

- 2013 Neighborhood meeting
 - Frustrated with condition of CR 54

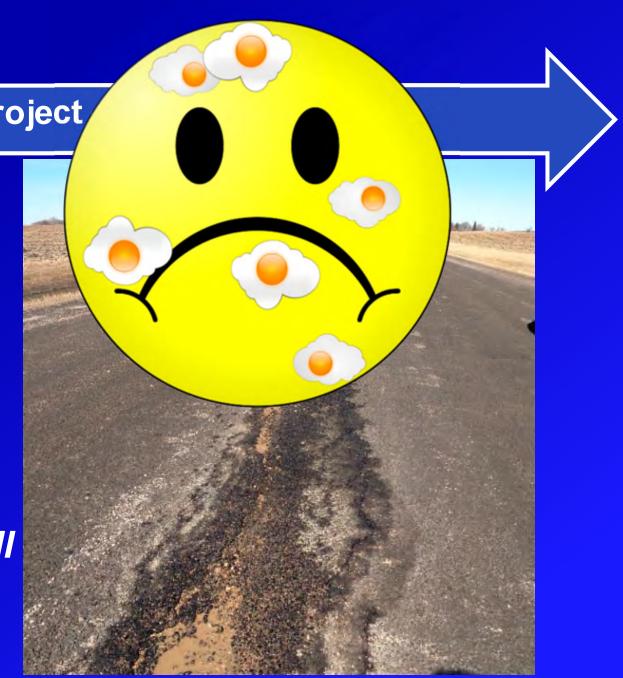
GOALS FOR CR 54 & other higher volume gravel roads

Dust Free Road

Washboard Free

Stand up to Agricultural Traffic

Cost Effective


Project History

2014 Prime/Seal Project

Emulsified Prime Coat

- Single Chip Seal
- Fog

Portions began to break up in fall

Project History

2015 Tiling and Reclamation Project

Project History

2016 Cement Stabilized Full Depth Reclamation, Seal Coat & Fog

Project Goal – Find the most cost effective optimal cement content and stabilization depth.

- 4 Test Sections
- Varying Cement Contents
- Varying Stabilization Depths
- Short Section of Single Chip Seal
- 4% Cross Slope

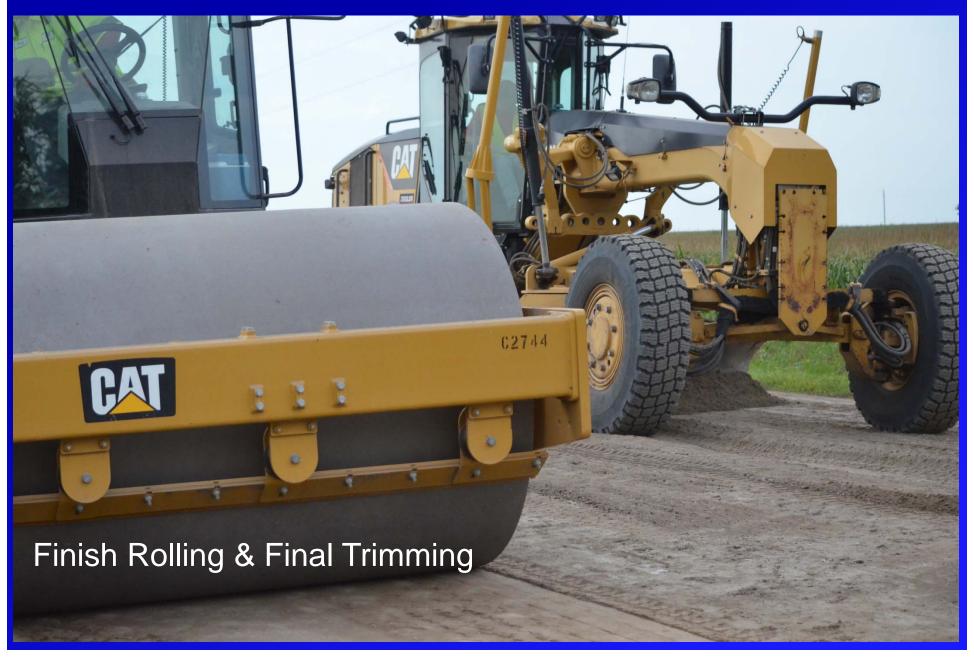
PROJECT OVERVIEW

	Section 1	Section 2	Section 3	Section 4
Cement Content	8 %	7 %	6 %	5 %
Stabilization Depth	10"	10"	8"	8"
Tack Coat	1300'	1300'	1300'	1300'
Double Chip Seal	1300'	1300'	1300'	1200'
Single Chip Seal	-	-	-	100'
Fog Seal	1300'	1300'	1300'	1300'

Spreading Cement

Cement Incorporation

Breakdown Rolling


Breakdown Rolling

Initial Blading

Seal Coat – Second Layer

Fog Seal

LESSONS LEARNED

Subgrade

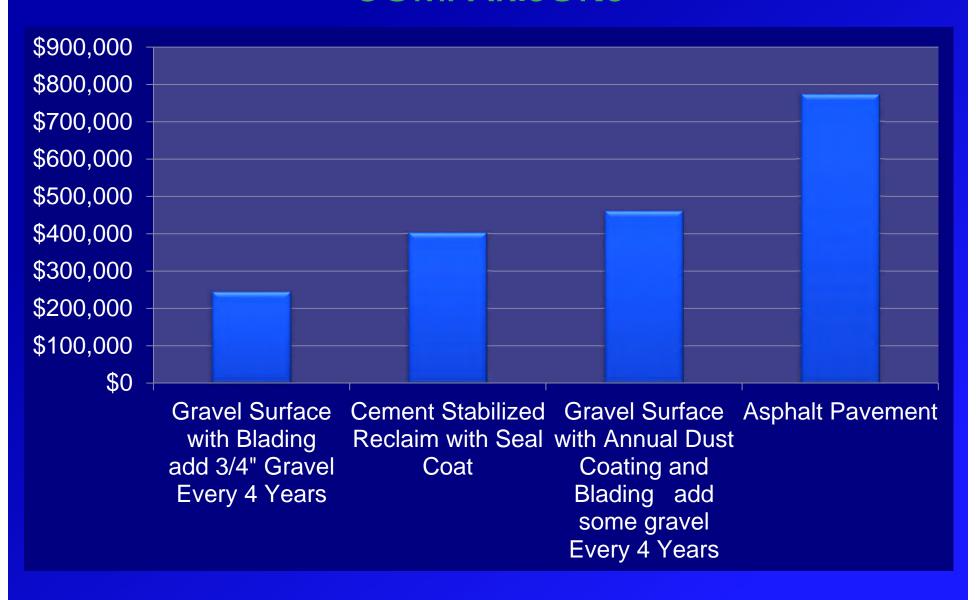
- Need Good Drainage
- Continue Centerline Tile

Residential Driveways

- Figure out Transition
- Potential Plowing Damage

Future Projects

- No County Operators, One Contract
- Ensure Samples Match Existing Conditions
- 2nd Seal Year 2 or later


2016 PROJECT COSTS

CSFDR	Cost/Mile	Cost/SY
• Cement	\$ 51,300	\$ 3.12
Stabilization	\$ 16,300	\$ 0.99
 Laydown/Compaction * 	\$ 15,000	\$ 0.93
CHIP SEAL		
Tack Coat	\$ 3,100	\$ 0.19
• 3/8" Seal	\$ 22,900	\$ 1.40
• 1/4" Seal	\$ 20,000	\$ 1.22
Fog Seal	\$ 3,300	\$ 0.20

50 YEAR LIFE CYCLE COSTS per mile COMPARISONS

NEXT STEPS

Finish CR 54

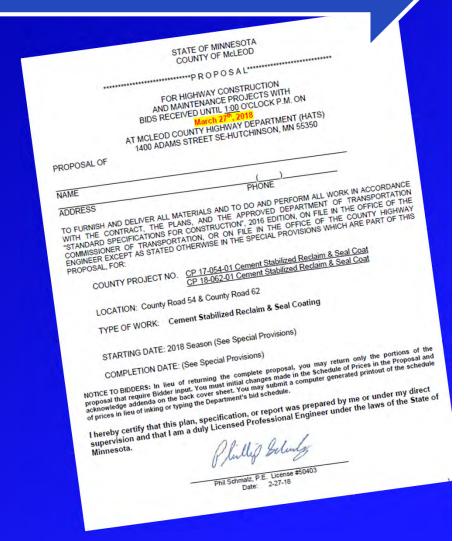
Continue to Monitor

More Planned

~14 Miles in 5-Year Plan

Good Tool in Tool Box for Right Road

• \$140,000/mile vs. Traditional Paving ~\$450,000+


2018 Project

2018 Cement Stabilized Full Depth Reclamation, Seal Coat & Fog

- Finish Remaining 3 Miles
- Micro Mill south 1 mile
- Traditional Design/Bid/Build
- Micro Mill south 1 mile
- Hybrid Specifications from

MnDOT/NDDOT/Consultant

- Contractor Mix Design
- Ride spec Straightedge
- Cross slope spec

2018 Project

2018 Cement Stabilized Full Depth Reclamation, Seal Coat & Fog

Contract Awarded to Allstates Pavement Recycling & Stabilization on May 8, 2018

County Road 54 – stand alone – Engineers Estimate: \$496,243.50				
Contractor	54 Bid			
Allstates Pavement Recycling/Stab, Rogers, MN	\$395,497.86			
Astech Corporation, St. Cloud, MN	\$426,778.98			
Duininck, Inc., Prinsburg, MN	\$432,211.76			

How did it go?

Early Concerns with Cement Laydown

How did it go?

Sealcoat Debonding

Now What?

County Didn't Get What They Want Vs.

Contractor "Met Spec"

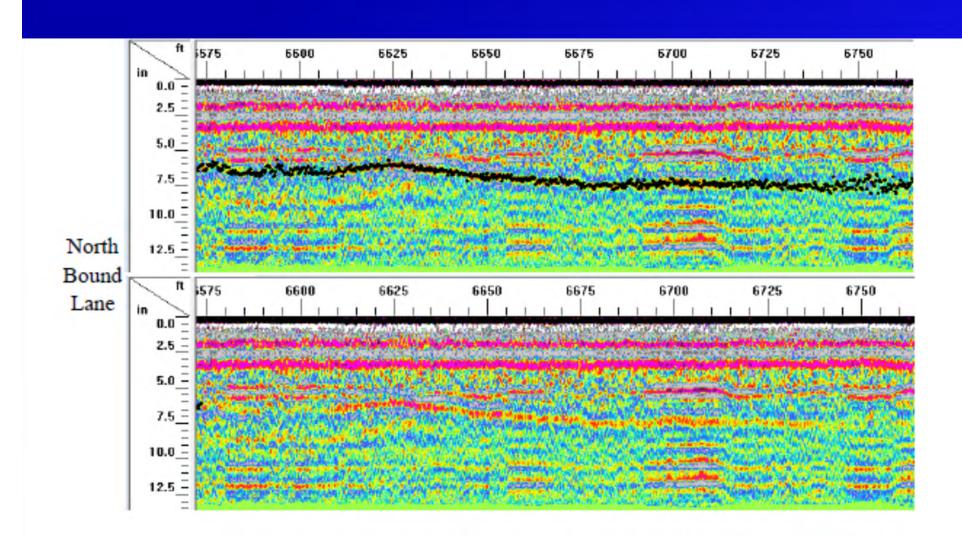
Received OPERA Funds to Test and Tell Story

2018 - Testing & Findings

Spring 2019

Chipseal Continued Debonding over the Winter/Spring

2018 - Testing & Findings


Work Plan

- Evaluate all construction testing data and inspector diaries
- Ground Penetrating Radar to Determine Depth of Stabilization
- Falling Weight Deflectometer Testing to Determine Current Strength of Roadway
- DCP Testing to Determine Strength of Cement Stabilized Base by Depth and Confirm Depth of Stabilization (and aid with GPR analysis)
- Coring (if possible) to Evaluate the Quality of the Stabilized Material
- Unconfined Compressive Strength Testing (if possible) to compare to Mix Design
- Report with findings

Construction Data

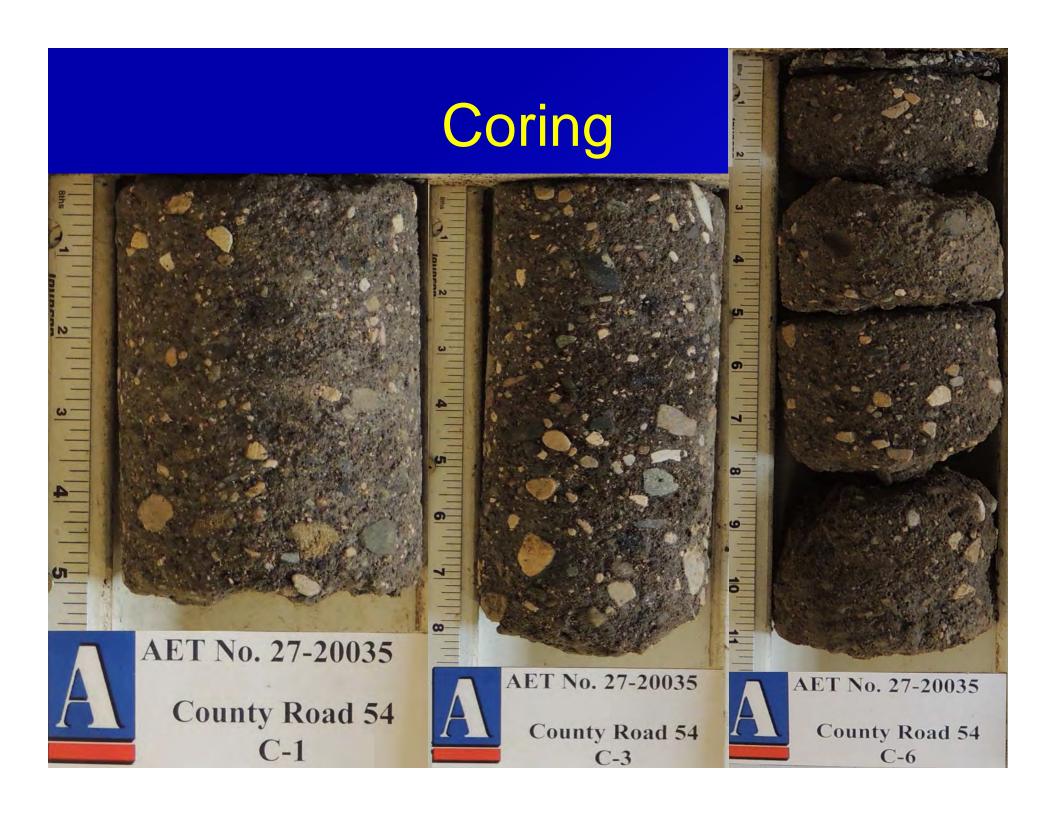
- Long Stretches of Cement Stabilization were done at one time.
 - Goal is to be mixed graded and compacted within 1 hour in the summer
- Unclear how well final compaction was completed after blade work and timing of final compaction
- Unclear how well surface was swept after micro-milling – might have affected bonding of chipseal

Ground Penetrating Radar

FWD Testing

- Definite Strength Difference Between Northern and Southern Portions of Roadway
- Combination of Differences in Subgrade and Stabilized Layer Strength

	Nort	hern 7,500	Feet	Sou	thern 8,000	Feet
	Spring Load Capacity (tons)	Effective GE (Inches)	Effective R Value	Spring Load Capacity (tons)	Effective GE (Inches)	Effective R Value
Average	10.4	29.4	7.4	6.1	19.1	5.6
Std. Dev.	3.3	6.9	1.9	2.0	6.6	1.7
Design	7.1	22.6	5.5	4.0	12.5	3.9


DCP Testing

 Most DCP Tests Showed Significant Differences in Strength with Depth

Number of Blows	DCP Readings (mm)	Difference (mm)	Depth (in)	DCP Index (mm/blow)	CBR	CBR
	52					0 50 100
3	80	28	1.1	9.3	23.9	0
3	98	18	1.8	6.0	39.3	1
3	112	14	2.4	4.7	52.0	2 ·
3	124	12	2.8	4.0	61.8	g 3
3	133	9	3.2	3.0	85.3	Depth (inches)
3	148	15	3.8	5.0	48.1	£ 5
3	160	12	4.3	4.0	61.8	å 6 - 1
3	174	14	4.8	4.7	52.0	7 /
3	187	13	5.3	4.3	56.5	8
3	203	16	5.9	5.3	44.8	9
3	220	17	6.6	5.7	41.8	
3	240	20	7.4	6.7	34.9	Average CBR: 48.4
3	265	25	8.4	8.3	27.2	

Comments

For all soils except CL<10 CBR and CH soils, CBR=292/(DPI^1.12). For CL<10, CBR=1/((0.017019^DPI)^2. For CH soils CBR=1/(0.002871^DPI).

Unconfined Compressive Strength

Cores that were Removed Intact were at or Near Design Strength (250 psi)

Core	UCS (psi)		
C-1	274		
C-3	193		
C-4	158		
C-5	98		
C-7	297		
C-8	338		
C-9	225		

Findings

- It Appears that the Time Between the Start of Mixing and Final Compaction was too Long. Stretches Being Worked were too Long to be Completed in One Hour.
- Divots in Road Surface were from Poorly Compacted Material Filling Padfoot Roller Depressions – Related to Time to Finish
- Variability in Strength both at Surface and at Depth Possibly Due to too Much Time from Start of Mixing Until Final Compaction
- Design Strength was Achieved in Many Locations
- Often only 6 inches of Stabilization Met Strength
- Dirty Surface of Roadway After Micro-milling Might have Hurt Bonding of Chipseal

Next Steps/Alternatives

- 1. Work with Contractor for Resolution
- 2. Identify Appropriate Fix for Current Conditions
 - a. Do Nothing
 - b. Add gravel to current surface
 - c. Reclaim entire road back to gravel
 - d. Pave entire road (CR 87 to CR 7)
 - e. Pave 1st mile only (CR 87 to 1 mile N)

QUESTIONS?

John Brunkhorst, PE County Engineer/Public Works Director

Dave Rettner, PE President/Principal

McLeod County Public Works (320) 484-4321 www.co.mcleod.mn.us/highway john.brunkhorst@co.mcleod.mn.us

American Engineering Testing, Inc.

(651) 755-5795 www.amengtest.com drettner@amengtest.com

